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Abstract. Two analytic expressions for the scattering length dependent on the coupling 
constant A are proposed. These expressions possess an infinite range of convergence unlike 
previous attempts. As a possible application we discuss the scattering length for collisions 
of electrons with rare gases, calculation of critical constants for short-range potentials and 
calculation of Sturmians. 

1. Introduction 

The scattering length plays an important role in low-energy scattering in a large variety 
of physical scattering processes. Its dependence on the coupling constant A is quite 
complicated. Starting from zero at A =0,  it passes through poles and zeros with 
increasing A. Appearance of a pole indicates the existence of a new zero-energy bound 
state. Not only the overall coupling constant dependence of the scattering length is 
important, but also its dependence on other parameters like the screening parameter 
which plays a significant role in the scattering of electrons on rare gases where it is 
related to the Ramsauer-Townsend effect. 

There are, of course, numerical methods for evaluation of the scattering length but 
they do not elucidate its dependence on the various parameters of interest. 

An important step forward in the investigation of the analytic dependence of the 
scattering length on the coupling constant A has been performed by Patil (1981), who 
proposed an expansion of the inverse of the scattering length a-'(A) in the form 

where p and b, are certain integrals. He studied a special class of potentials, the 
screened Coulomb potentials, which can be written in the form 

V ( r )  = - ( Z / r ) , f ( r / r o )  (1.2) 

where r,, is the screening parameter for which the screening becomes significant when 
r >  ro. Although such potentials are functions of the two parameters Z and ro, the 
scattering length is a function of essentially only one parameter, namely the effective 
coupling constant 

A =Zr,,.  (1.3) 
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The region of convergence of the expansion (1.1) is restricted below the first zero of 
u(A). This is a rather severe limitation which prevents the method being used, for 
example, for heavier atoms such as Ar, Kr and Xe. 

In this paper we propose two expansions of the scattering length which do not 
suffer from this restriction. They are valid in principle for any effective coupling 
constant A. Both our expressions also prove very effective tools for calculation of the 
critical constants, i.e. such values of A for which there exist zero-energy bound states. 
A knowledge of the critical constants is very important for the study of ionised gases. 
For example, the partition function for the isolated hydrogen atom 

L13 

n = l  
(1.4) 

diverges. In any real physical situation the electric field is not purely Coulombic but 
is screened by other atoms. The resulting potential decreases faster and Z is finite 
containing only a finite number of terms. 

As a last application of our formulae we discuss the calculation of Sturmian 
functions. 

The paper is organised as follows. The expansions for the scattering length are 
developed in 0 2.  Section 3 contains applications to (i) calculation of the scattering 
length for the collision of electrons with rare gas atoms, (ii) calculation of the critical 
constants for some typical short-range potentials and (iii) calculation of Sturmians. 

2. Expansions of the scattering length 

In this section we develop two expansions for the scattering length. The first expansion 
is based on a reduction of the Schrodinger equation to a Volterra-type integral equation 
and the second is based on the Fredholm equation. First we shall discuss the Volterra 
equation ( V E )  approach. Let us assume that the potential V is local and satisfies the 
condition 

lom dr  rl V( r)]  <CO. 

The scattering wavefunction +br( k, r), regular at the origin, is given by the following 
equation: 

where 

and j,(kr) and nl(kr) are Riccatti-Bessel functions. The phase shift & ( k )  is given by 
the standard relation 

r =  
t a n 8 , ( k ) = J  j,(kr)V(r)+b,(k, r )dr .  

0 
(2.3) 
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Since we shall treat zero-energy S-wave scattering only we shall omit all unnecessary 
indices and write (2.1) explicitly as 

a: 

+ ( r )  = r -  1: yv(y)rL(y) dy - r 1 V ( Y ) + ( Y )  dy (2.4) 
r 

and the scattering length a as 

a = Iom YV(Y)+(Y) dY. (2.5) 

Equation (2.1) is of Fredholm type but can be transformed by a simple transformation 
of the Green function Go+ g o t  

(2.6) Go(O; r, r ' )  + go(O; r, r ' )  = ( r  - r ' )O(  r - r' )  

where 0 is the Heaviside step function, to an equation 

which is of Volterra type. The quantity in the bracket on the RHS of (2.7) is of course 
not known but this provides no problem. Instead of (2.7) the following auxiliary 
equation is solved first: 

cp(r )=  r -  ( Y - r ) V ( y ) c p ( y ) d y  (2.8) lor 
and then cc/ and a are expressed by means of v as 

(2.10) 

Let us now explicitly introduce the coupling constant A into consideration, i.e. we will 
write AV instead of V in (2.8). Since this equation is a Volterra-type equation its 
unique solution is given by the series 

cp = f + A g o V f + ( A g 0 V ) * f + .  . . (2.11) 

which is absolutely and uniformly convergent for any A (Newton 1982). (f here 
denotes the first term on the RHS of (2.8).) Denoting by p n  and qn the integrals 

(2.12) 

(2.13) 

and using (2.10) and (2.11) we obtain the sought-after expansion of the scattering 
length, namely 

(2.14) 

t For details of this transformation see Sasakawa (1977). 
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or, for its inverse, 

1 1 + X F  q m A m  
A X?p, ,A" ' 

a - ' ( A )  = - (2.15) 

This is our first result. The series in (2.14) (resp (2.15)) are convergent for any A. 
Equation (2.15) should be compared with Patil's expansion (1.1) which, unlike our 
expansion, is valid only for I A l < l A o l  where A. is the first zero of a ( A ) .  I t  should be 
stressed, however, that our statement about the convergence of (2.14) (resp (2 .15))  is 
correct only for local potentials V. If V is a non-local potential, then our expansion 
also has a limited range of convergence. In order to obtain an expansion which would 
be convergent for any A, even in the case of a non-local potential, we must use a 
completely different approach. Some time ago we proposed the method of continued 
fractions ( M C F )  (HoraEek and Sasakawa 1983, 1984, 1985). This approach is based 
on a repeated decomposition of the potential V into two terms, one of which is 
separable: 

(2.16) 

(2.17) 

etc, where If,) = GoVI f ). We will not go into details of this method here and refer 
readers to the original papers. Here we quote only some results. This method yields 
the scattering length ( t  or K matrix elements) in the form of a continued fraction: 

Ad: 
a ( A )  = 

A2d: 
do- Adl - 

A2di  
d2 - Ad, - 

dq- Ads-. . .' 

(2.18) 

This expansion is convergent for any A provided the operator GoV is compact. This 
is our second expression for the scattering length. It is useful for local as well as for 
non-local potentials and for separable N-term potentials gives exact results. 

3. Applications 

3.1. Calculation of the scattering length 

First we apply our results to the calculation of the scattering length for the Coulomb 
screened potential of the form 

V(r) = -(Z/r)f(r/ro). (3 .1)  
As noted in the introduction, the scattering length of such potentials depends only on 
the effective coupling constant A, 

A = Zr,. (3.2) 
For the sake of comparison we consider the same examples as Patil (1981), namely 

(i) the Yukawa potential 

V(r) = - ( Z / r )  exp(-r/r,) (3.3) 
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and 
(ii) a potential describing the polarisation interaction 

which has an asymptotic behaviour 

V ( r )  - - z r i / 3 r 4 .  
r-33 

( 3 . 4 )  

( 3 . 5 )  

First we discuss case (i). The coefficients of the MCF expansion for the scattering 
length, i.e. of equation (2 .18) ,  are shown in table 1 and that of the V E  expansion ( 2 . 1 4 )  
in table 2.  A comparison of both expressions is shown in tables 3 and 4 where the 
scattering length is given as a function of the coupling constant A and the number N 
of terms of the respective expansions. For the same accuracy, the MCF requires a much 
smaller number of terms than the VE approach. 

Table 1. The coefficients d, for the continued fraction expansion (2.18) of the scattering 
length for a Yukawa potential. 

I 4 I 

-2 
-2 
-3.014 566 X l o - '  
-1.154714X l o - '  
-5.139451 X 

-8.863 615 X 

-2.197 8 7 4 ~  lo- '  
-2.142 731 x 
-3.386 870 x 

10 
11 
12 
13 
14 
15 
16 
17 
18 

4 

- 2 . 1 1 8 3 1 2 ~  IO-' 
-2.320 415 X l o - ' '  
-1.009 208 x lo- ' '  
-8.112 3 5 5 x  lo- ' '  
-2.594 356 x 
- 1.595 465 X 

-3.908 622 x lo-*' 
-1.898 278 X lo-'' 
-3.676 149 x 

Table 2. The coefficients p ,  and 9, for the VE expansion (2.14) of the scattering length for 
a Yukawa potential. 

1 Pt 9, 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

-1 

-0.945 3491 x l o - '  
0.5 

0.958 5373 x 
-0.609 8587 x 

0.266 8709 x 

0.208 4031 x 
-0.401 3496 x 

0.625 4395 x l o - ' '  
-0.805 0213 x l o - ' '  

0.870 3897 x lo-' '  

-0.853 5578 x 

-0.801 7377 x 10-1' 

-1 

-0.452 2874 x l o - '  
0.306 8528 

0.390 5938 x lo-' 
-0.221 3592x 

0.886 0573 x 

0.606 7522 x 

0.165 6487 x lo-"  

0 . 2 1 4 2 9 7 0 ~  
-0.191 3911 x 

-0.263 7732 x 

-0.1 11 0724 X lo-' 

-0.205 1328 x 
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Table 3. The scattering length for a Yukawa potential calculated using the continued 
fraction expansion (2.18) for various values of the coupling constants A. N denotes the 
number of terms in the expansion (2.18). 

~~ 

N / A  2 4 6 8 

0.5 -2.206 803 -2.206918 
1.5 2.179 976 2.128 413 

3.5 -8.138 038 10.571 002 
4.5 13.962 126 2.975 252 
5.5 6.509 792 1.141 251 
6.5 4.964 558 -1.737 672 

2.5 -3.793 267 -1.115 844 

- - 
2.128 412 - 

-1.116 159 -1.116 159 
10.526 576 10.526 575 
2.946 516 2.946 512 
1.024 770 1.024 724 

-2.928 304 -2.929 859 

Table 4. The same quantity as in table 3 but calculated using the VE expansion (2.14). 

NI  A 5 10 15 20 

0.5 
1.5 
2.5 
3.5 
4.5 
5.5 
6.5 

- 
~ ~~~ 

.2.207 087 
2.154 397 
0.995 715 
2.635 549 
2.959 359 
2.965 683 
2.948 192 

-2.206918 -2.206918 -2.206918 
2.128 412 2.128 412 2.128 412 

-1,116202 -1.116 159 -1.116 159 
10.519 69 10.526 58 10.526 578 
2.951 658 2.946 513 2.946 513 
1.168 734 1.024 724 1.024 725 

-0.018 007 -2.929 919 -2.929 856 

Case (ii) is a little more complicated because of the long-range behaviour of the 
interaction (3 .4 ) .  The variable phase equation for the scattering length 

d 
- a ( r ) = - 2 A V ( r ) ( r + a ( r ) ) 2  
dr  (3.6) 

indicates that for the interaction (3 .4 ) ,  a ( r )  behaves as r-' for large r and therefore 
must be calculated to very large distances. This is very impractical. To avoid this 
complication we propose the following. We calculate the scattering length by means 
of equation (2.14) or (2.18) on a finite large interval (0, R )  and obtain a scattering 
length uR which corresponds to a cutted potential (3 .4 ) ,  i.e. V (  r )  = 0 for r > R.  For 
sufficiently large R the neglected remainder a - aR is small and may be treated as a 
perturbation. By expanding the remainder a - aR in powers of 11 R and keeping only 
a few terms we arrive at an approximate expression for a :  

a R + 2 A / 3 R  -8A2/27R3  
' ( ' I -  1 - 2 A / 3 R 2 - ( 2 A / 9 R 3 ) ( a R  + 2 A / 3 R )  (3 .7 )  

which is good for sufficiently large R. We tested this expression for several values of 
R ranging from 50 to 500 and various A. In table 5 we show the results obtained by 
nine iterations of the MCF together with the results of numerical solution of the 
Schrodinger equation. From this table we conclude that nine terms in the MCF 

expansion (2.18) yield results useful for A as large as 20. This allows us to apply our 
formula also to other noble gases like argon where A = 17.52 and, with somewhat lesser 
accuracy, to krypton with A = 31.92. 
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Table 5. The scattering length a calculated using the continued fraction expansion (2.18) 
with N = 9 for the long-range polarisation potential (3.4). The last column contains values 
of the scattering length obtained from numerical solution of the Schrodinger equation in 
its differential form. 

QMCF U N U M  

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
24 
28 
32 

-1.398 168 
2.297 449 

-2.506 499 
-0.526 868 

7.907 807 
-4.200 643 
-0.450 298 

2.437 755 
18.349 36 
-6.509 230 

0.966 369 
31.128 
-3.284 712 

-1.398 168 
2.297 449 

-2.506 499 
-0.526 868 

7.907 807 
-4.200 643 
-0.450 297 

2.437 761 
18.350311 
-6.508 468 

0.969 61 5 
32.601 6 
-3.080 77 

3.2. Calculation of critical constants 

Next we apply our results to the calculation of the critical constants, i.e. to the 
determination of such values of A for which a zero-energy bound state exists. Such a 
calculation is usually done in the following way. The bound-state energy is calculated 
for various values of A and by interpolating in energy and in A the critical value is 
found. Such an approach is time consuming and not very accurate. Our approach 
allows one to evaluate the critical constants without solving any bound-state problem. 
This is simply done by finding zeros of the denominators of (2.14) (resp (2.18)). The 
use of an expression similar to (2.14) for the calculation of the critical values was 
proposed recently by Buendia and Guardiola (1985) who, however, write this expansion 
for the zero-energy Jost function instead of a ( A )  and determine its zeros. To determine 
the critical values one must solve a polynomial equation in the case of (2.14), namely 

N 

q n A n  = -1 
0 

or the equation 

A2d: 
do-Adl- = O  (3.9) A2d: 

d z - A d , -  
d, - AdS-.  . . 

in the case of (2.18). Since the results obtained by the VTE approach are similar to 
those of Buendia and Guardiola we will discuss only the M C F  results which again 
show much faster convergence. In table 6 we show the results of the calculation of 
the first few critical constants calculated for various interactions. The second column 
contains the critical constants for the exponential potential -exp( -x) ,  the third that 
for the Yukawa potential -exp(-x)/x and the last that for the Reid 'S soft core 
potential (Reid 1968). The Reid soft core potential is widely used in nuclear physics 
and its typical feature is a strong short-range repulsion which results in small negative 
critical constants. 
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Table 6. S-wave critical constants for some typical short-range potentials (exponential, 
Yukawa and Reid). 

Exponential Yukawa Reid 
I A ,  A ,  A ,  

1 1.445 7965 1.679 8078 -0.062 8772 
2 7.617 8156 6.447 2603 -0.253 2902 
3 18.721 7517 14.342 0279 -0.576 2825 
4 34.760 5209 25.372 4359 -1.031 534 
5 55.933 9442 39.758 7794 1.082 1808 

3.3. Calculation of Sturmians 

As a last application we mention the calculation of Sturmians. These states, also called 
Weinberg states (Rawitscher 1982), are eigenfunctions of the operator Go( E )  V, i.e. 

Go( E 1 V$i ( E ) = 71 ( E  1 $i( E 1 (3.10) 

and are of great importance in scattering theory. Once these functions are determined, 
one can express all important quantities by means of these functions. For example, 
the T matrix defined as 

T ( E ) =  V +  VG,(E)T(E) (3.11) 

is given as 

(3.12) 

where we have normalised the Sturmians as 

($11 VI$,) = - a y .  (3 .13)  

In fact, the critical constants A calculated above are a special case of (3.10) because 

A, = 7; ' (0 ) .  (3.14) 

Once the eigenvalues r ] , ( E )  and the critical values A , ( E )  are determined by solving 
the algebraic equation (3 .9) ,  the corresponding (unnormalised) Sturmian I& is immedi- 
ately obtained in the following continued fraction form: 

where again 

(3.15) 

(3.16) 

etc. In  equations (3 .15)  and (3.16) U, means 

U, = GoV,-Iu,-, . (3 .17)  
In the VE approach the (unnormalised) Sturmian is simply given by (2.11)- A detailed 
discussion of calculation of Sturmians will be given elsewhere. 
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4. Conclusion 

Two analytic expressions for the scattering length a ( A )  have been proposed. The first 
expression represents the scattering length in the form of a rational fraction in the 
coupling constant A, the second in the form of a continued fraction. Both expansions 
are convergent under very general conditions for any A. We discuss three applications 
of our formulae: ( i )  elastic scattering of electrons with rare gas atoms in a simple 
model, (ii) calculation of the critical constants (critical screening parameters) for some 
local potentials, and (iii) calculation of Sturmians. A typical feature of our approach 
is that only a few iterations of the operator GoV are needed to obtain all necessary 
results. No bound-state energy calculation is required. The resulting scattering length 
and critical constants are very accurate and stable. 

Finally we note that our results are not restricted to zero energy but are equally 
applicable at any energy, including complex energies of resonances. 
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